
Figure 1: (left) The median and inner 90th percentile range for the value of the portfolio. (right) Grid search using T=10 observations to maximize the worst-case behavior of the portfolio.

Figure 2: (from left to right) For 1, 2 and 3 dimensions, a grid search with T=10 points per dimension would require 10, 100 and 1000 total metric evaluations. Quickly, this becomes too costly for all but the simplest of underlying models.

Figure 5: (left) The standard uniform grid search with T=5 has difficulty recognizing certain relationships between dimensions as evidenced by the inconsistent gaps between points when viewed at certain angles. (right) In contrast, the (2, 3, 5) Halton sequence3 with the same 125 points is able to keep a more consistent density at all angles, which suggests a better understanding of the relationship between dimensions.

Figure 6: For these two functions, we see roughly similar behavior for the random subsample and Halton low discrepancy strategies. The iterative 1D slice strategy performs better than them, including potentially reaching the full grid performance, as seen on the left. (left) The Hartmann4 function. (right) The Shekel (m=7) function.

Figure 7: All three modifications have significantly different behavior for these two functions. On the left, the random subsampling is distinctly better than Halton, whereas on the right the Halton method can surpass even the full 10000 point grid search solution. (left) The negative log10 of the Gear function. (right) The Michalewicz function.