SigOpt was founded to empower the world’s experts
Our black-box hyperparameter optimization solution automates model tuning to accelerate the model development process and amplify the impact of models in production at scale. This process empowers our customers to generate more high-performing models in production. And with more models in production, they earn a higher return on their modeling investment.
Augment Expert Productivity
“SigOpt offers an advanced and scalable solution capable of impacting the performance of any type of AI model. Whether working on simulations, reinforcement learning, deep neural networks, machine learning or anything in between, researchers can use SigOpt to track, analyze, and tune their models.”
George Hoyem
Managing Partner
In-Q-Tel
Amplify Impact of Your Models
“We’ve integrated SigOpt’s optimization service and are now able to get better results faster and cheaper than any solution we’ve seen before.”
Matt Adereth
Managing Director
Two Sigma
Accelerate Model Development
“Integrating SigOpt into our modeling platform empowers our team to more efficiently experiment, optimize and, ultimately, model at scale.”
Peter Welinder
Research Scientist
OpenAI
Built to Deliver Enterprise Results at Scale







Backed by Leading Applied Research
Applying optimization techniques to enterprise modeling use cases comes with its own host of unique challenges. Our research team is passionate about evolving our optimization solution to address these challenges so our customers can trust the performance of their models in production and at scale. In the process, our customers often abandon grid search, random search, and open source Bayesian optimization.
The Most Advanced Optimization Solution
10-100x Faster
Whether utilizing our leading Optimization Engine or advanced features like Multitask Optimization, our customers tune their models much faster than when using alternative methods. This becomes particularly important as teams increase the complexity or dimensionality of their models. Explore use cases in which SigOpt tunes models 10x faster than other methods.
90% Cost Savings
SigOpt significantly increases computational efficiency with an ensemble of Bayesian and global optimization algorithms that are designed to efficiently explore and exploit any parameter space. When combined with leading AI hardware, this approach results in enormous cost savings that scale with modeling over time. Learn how AWS, NVIDIA and SigOpt efficiently scale model training and tuning.
Better Performance
There is no free lunch, but SigOpt consistently outperforms grid, random, and other Bayesian search methods across a wide cross-section of problems. Though the primary benefit of SigOpt is that it can efficiently optimize any model, it most often delivers better performance along the way. Learn how we compare in a stratified analysis of Bayesian optimization methods.
Resource Library
Explore applied model optimization research, machine learning market trends and real-world enterprise use cases for hyperparameter optimization





